Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2707, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302569

RESUMO

With human space exploration back in the spotlight, recent studies have investigated the neuromuscular adjustments to simulated hypogravity running. They have examined the activity of individual muscles, whereas the central nervous system may rather activate groups of functionally related muscles, known as muscle synergies. To understand how locomotor control adjusts to simulated hypogravity, we examined the temporal (motor primitives) and spatial (motor modules) components of muscle synergies in participants running sequentially at 100%, 60%, and 100% body weight on a treadmill. Our results highlighted the paradoxical nature of simulated hypogravity running: The reduced mechanical constraints allowed for a more flexible locomotor control, which correlated with the degree of spatiotemporal adjustments. Yet, the increased temporal (shortened stance phase) and sensory (deteriorated proprioceptive feedback) constraints required wider motor primitives and a higher contribution of the hamstring muscles during the stance phase. These results are a first step towards improving astronaut training protocols.


Assuntos
Músculos Isquiossurais , Corrida , Voo Espacial , Humanos , Corrida/fisiologia , Hipogravidade , Sistema Nervoso Central , Músculo Esquelético/fisiologia
2.
Front Physiol ; 14: 1201253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601641

RESUMO

Motor control, including locomotion, strongly depends on the gravitational field. Recent developments such as lower-body positive pressure treadmills (LBPPT) have enabled studies on Earth about the effects of reduced body weight (BW) on walking and running, up to 60% BW. The present experiment was set up to further investigate adaptations to a more naturalistic simulated hypogravity, mimicking a Martian environment with additional visual information during running sessions on LBPPT. Twenty-nine participants performed three sessions of four successive five-min runs at preferred speed, alternating Earth- or simulated Mars-like gravity (100% vs. 38% BW). They were displayed visual scenes using a virtual reality headset to assess the effects of coherent visual flow while running. Running performance was characterized by normal ground reaction force and pelvic accelerations. The perceived upright and vection (visually-induced self-motion sensation)in dynamic visual environments were also investigated at the end of the different sessions. We found that BW reduction induced biomechanical adaptations independently of the visual context. Active peak force and stance time decreased, while flight time increased. Strong inter-individual differences in braking and push-off times appeared at 38% BW, which were not systematically observed in our previous studies at 80% and 60% BW. Additionally, the importance given to dynamic visual cues in the perceived upright diminished at 38% BW, suggesting an increased reliance on the egocentric body axis as a reference for verticality when the visual context is fully coherent with the previous locomotor activity. Also, while vection was found to decrease in case of a coherent visuomotor coupling at 100% BW (i.e., post-exposure influence), it remained unaffected by the visual context at 38% BW. Overall, our findings suggested that locomotor and perceptual adaptations were not similarly impacted, depending on the -simulated- gravity condition and visual context.

3.
Neurosci Lett ; 810: 137335, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37321387

RESUMO

In humans, body segments' position and movement can be estimated from multiple senses such as vision and proprioception. It has been suggested that vision and proprioception can influence each other and that upper-limb proprioception is asymmetrical, with proprioception of the non-dominant arm being more accurate and/or precise than proprioception of the dominant arm. However, the mechanisms underlying the lateralization of proprioceptive perception are not yet understood. Here we tested the hypothesis that early visual experience influences the lateralization of arm proprioceptive perception by comparing 8 congenitally-blind and 8 matched, sighted right-handed adults. Their proprioceptive perception was assessed at the elbow and wrist joints of both arms using an ipsilateral passive matching task. Results support and extend the view that proprioceptive precision is better at the non-dominant arm for blindfolded sighted individuals. While this finding was rather systematic across sighted individuals, proprioceptive precision of congenitally-blind individuals was not lateralized as systematically, suggesting that lack of visual experience during ontogenesis influences the lateralization of arm proprioception.


Assuntos
Propriocepção , Extremidade Superior , Humanos , Adulto , Movimento , Cotovelo , Visão Ocular , Desempenho Psicomotor
4.
Front Physiol ; 14: 1212198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334048

RESUMO

Introduction: Originally developed for astronauts, lower body positive pressure treadmills (LBPPTs) are increasingly being used in sports and clinical settings because they allow for unweighted running. However, the neuromuscular adjustments to unweighted running remain understudied. They would be limited for certain lower limb muscles and interindividually variable. This study investigated whether this might be related to familiarization and/or trait anxiety. Methods: Forty healthy male runners were divided into two equal groups with contrasting levels of trait anxiety (high, ANX+, n = 20 vs. low, ANX-, n = 20). They completed two 9-min runs on a LBPPT. Each included three consecutive 3-min conditions performed at 100%, 60% (unweighted running), and 100% body weight. Normal ground reaction force and electromyographic activity of 11 ipsilateral lower limb muscles were analyzed for the last 30 s of each condition in both runs. Results: Unweighted running showed muscle- and stretch-shortening cycle phase-dependent neuromuscular adjustments that were repeatable across both runs. Importantly, hamstring (BF, biceps femoris; STSM, semitendinosus/semimembranosus) muscle activity increased during the braking (BF: +44 ± 18%, p < 0.001) and push-off (BF: +49 ± 12% and STSM: +123 ± 14%, p < 0.001 for both) phases, and even more so for ANX+ than for ANX-. During the braking phase, only ANX+ showed significant increases in BF (+41 ± 15%, p < 0.001) and STSM (+53 ± 27%, p < 0.001) activities. During the push-off phase, ANX+ showed a more than twofold increase in STSM activity compared to ANX- (+119 ± 10% vs. +48 ± 27, p < 0.001 for both). Conclusion: The increase in hamstring activity during the braking and push-off phases may have accelerated the subsequent swing of the free-leg, likely counteracting the unweighting-induced slowing of stride frequency. This was even more pronounced in ANX+ than in ANX-, in an increased attempt not to deviate from their preferred running pattern. These results highlight the importance of individualizing LBPPT training and rehabilitation protocols, with particular attention to individuals with weak or injured hamstrings.

5.
J Neurophysiol ; 130(1): 155-167, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314089

RESUMO

A few years after their bilateral vestibular loss, patients usually show a motor repertoire that is almost back to normal. This recovery is thought to involve an upregulation of the visual and proprioceptive information that compensates for the lack of vestibular information. Here, we investigated whether plantar tactile inputs, which provide body information relative to the ground and to the Earth vertical, contribute to this compensation. More specifically, we tested the hypothesis that somatosensory cortex response to electric stimulation of the plantar sole in standing adults will be greater in humans (n = 10) with bilateral vestibular hypofunction (VH) than in an age-matched healthy group (n = 10). Showing significantly greater somatosensory evoked potentials (i.e., P1N1) in VH than in control subjects, the electroencephalographic recordings supported this hypothesis. Furthermore, we found evidence that increasing the differential pressure between both feet, by adding a 1-kg mass at each pendant wrist, enhanced the internal representation of body orientation and motion relative to a gravitational reference frame. The large decrease in alpha power in the right posterior parietal cortex (and not in the left) is in line with this assumption. Finally, behavioral analyses showed that trunk oscillations were smaller than head oscillations in VH and showed a reverse pattern for healthy participants. These findings are consistent with a tactile-based postural control strategy in the absence of vestibular input and a vestibular-based control strategy in healthy participants where the head serves as a reference for balance control.NEW & NOTEWORTHY Somatosensory cortex excitability is greater in participants with bilateral vestibular hypofunction than in age-matched healthy humans. To control balance, healthy humans "locked" the head whereas participants with vestibular hypofunction "locked" their pelvis. For participants with vestibular hypofunction, increasing loading/unloading of the feet enhances the internal representation of body state in the posterior parietal cortex.


Assuntos
Propriocepção , Vestíbulo do Labirinto , Adulto , Humanos , Propriocepção/fisiologia , Equilíbrio Postural/fisiologia , , Vestíbulo do Labirinto/fisiologia , Estimulação Elétrica
6.
Front Hum Neurosci ; 16: 782028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774481

RESUMO

Tactile plantar information is known to play an important role in balance maintenance and to contribute to the setting of anticipatory postural adjustments (APAs) prior to stepping. Previous studies have suggested that somatosensory processes do not function optimally for obese individuals due to the increased pressure of the plantar sole resulting in balance issues. Here, we investigated whether decreasing the compression of the mechanoreceptors by unweighting the plantar sole would enhance tactile sensory processes leading to an increased stability and an accurate setting of the APAs in obese individuals. More specifically, we tested the hypothesis that the somatosensory cortex response to electric stimulation (SEP) of the plantar sole in standing obese persons will be greater with reduced body weight than with their effective weight. The level of unweighting was calculated for each participant to correspond to a healthy body mass index. We showed an increase SEP amplitude in the unweighted condition compared to the effective body weight for all participants. This increase can be explained by the reduction of weight itself but also by the modified distribution of the pressure exerted onto the foot sole. Indeed, in the unweighted condition, the vertical ground reaction forces are evenly distributed over the surface of the foot. This suggests that decreasing and equalizing the pressure applied on the plantar mechanoreceptors results in an increase in somatosensory transmission and sensory processes for obese persons when unweighted. These sensory processes are crucial prior to step initiation and for setting the anticipatory postural adjustments (i.e., thrust). These cortical changes could have contributed to the observed changes in the spatiotemporal characteristics of the thrust prior to step initiation.

7.
Percept Mot Skills ; 129(3): 431-453, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35543706

RESUMO

Proprioception is the sense of position and movement of body segments. The widespread distribution of proprioceptors in human anatomy raises questions about proprioceptive uniformity across different body parts. For the upper limbs, previous research, using mostly active and/or contralateral matching tasks, has suggested better proprioception of the non-preferred arm, and at the elbow rather than the wrist. Here we assessed proprioceptive perception through an ipsilateral passive matching task by comparing the elbow and wrist joints of the preferred and non-preferred arms. We hypothesized that upper limb proprioception would be better at the elbow of the non-preferred arm. We found signed errors to be less variable at the non-preferred elbow than at the preferred elbow and both wrists. Signed errors at the elbow were also more stable than at the wrist. Across individuals, signed errors at the preferred and non-preferred elbows were correlated. Also, variable signed errors at the preferred wrist, non-preferred wrist, and preferred elbow were correlated. These correlations suggest that an individual with relatively consistent matching errors at one joint may have relatively consistent matching errors at another joint. Our findings also support the view that proprioceptive perception varies across upper limb joints, meaning that a single joint assessment is insufficient to provide a general assessment of an individual's proprioception.


Assuntos
Articulação do Cotovelo , Desempenho Psicomotor , Braço , Humanos , Movimento , Percepção , Propriocepção , Extremidade Superior
8.
Cereb Cortex Commun ; 2(1): tgaa094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34296149

RESUMO

Cutaneous foot receptors are important for balance control, and their activation during quiet standing depends on the speed and the amplitude of postural oscillations. We hypothesized that the transmission of cutaneous input to the cortex is reduced during prolonged small postural sways due to receptor adaptation during continued skin compression. Central mechanisms would trigger large sways to reactivate the receptors. We compared the amplitude of positive and negative post-stimulation peaks (P50N90) somatosensory cortical potentials evoked by the electrical stimulation of the foot sole during small and large sways in 16 young adults standing still with their eyes closed. We observed greater P50N90 amplitudes during large sways compared with small sways consistent with increased cutaneous transmission during large sways. Postural oscillations computed 200 ms before large sways had smaller amplitudes than those before small sways, providing sustained compression within a small foot sole area. Cortical source analyses revealed that during this interval, the activity of the somatosensory areas decreased, whereas the activity of cortical areas engaged in motor planning (supplementary motor area, dorsolateral prefrontal cortex) increased. We concluded that large sways during quiet standing represent self-generated functional behavior aiming at releasing skin compression to reactivate mechanoreceptors. Such balance motor commands create sensory reafference that help control postural sway.

9.
Front Physiol ; 12: 649396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815153

RESUMO

This study investigated the sex influence on the acute and delayed fatigue effects of a 20 km graded running race. Eighteen recreational runners, 10 women and 8 men, completed the race. The testing protocol included five sessions: a week before the race (PRE), 35 ± 15 min after (POST), 2 h, 2 and 4 days (2D and 4D) later. Each session included uni- and bilateral maximal isometric voluntary contractions of the knee extensors (MVC), a squat jump (SJ), and a drop jump (DJ). Acute and delayed muscle soreness (DOMS) were evaluated for the quadriceps, hamstring and triceps surae muscle groups. The 2D and 4D sessions included also a horizontal force-velocity test (HF-V) performed under five resistive conditions. For each test, a set of key variables was computed to characterize the lower limb functional recovery. Mixed ANOVA analyses revealed significant (sex × time) interactions, with larger acute drops for men in MVCs and earlier recovery for women in the bilateral MVC (p < 0.001) and DJ (p < 0.05) tests. Only women reported DOMS for the hamstrings at 2D (p < 0.001) and showed small improvements in pure concentric SJ (p < 0.05) and HF-V (p < 0.01) tests at 4D. As expected, DOMS disappeared prior to the complete functional recovery. These results confirmed the combined influence of testing task and sex on the functional recovery pattern while supporting a lesser and faster recovery in women. The originality of this study lies in the complexity and sex-dependence of the functional recovery pattern revealed by a multiple factorial analysis which was used to identify the most discriminating tests and variables in the recovery pattern. The obtained clusters highlighted some recovery profiles associated with greater risks of injury when starting to run again. However, the lack of sex × time interaction for normalized values emphasizes the major influence of men's initially higher functional values compared to women.

10.
Gait Posture ; 80: 246-252, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32559643

RESUMO

BACKGROUND: The anticipatory postural adjustments (APA) associated with step initiation are impaired in obese patients (e.g. longer duration, greater lateral center of pressure excursion). This could arise from the known altered internal representation of the body in obese individuals as this representation is crucial for enhancing the processing of foot cutaneous inputs prior to step initiation and for setting the APA. RESEARCH QUESTION: The purpose of the study was to examine if the processing of foot cutaneous inputs and the preparation of the APA when planning a step are impaired in obese patients due to their damaged body internal representation (BIR). We also investigated whether these sensorimotor processes will be restored after a 15-day intervention program composed of motor and cognitive activities engaging the BIR without aiming weight loss. METHODS: We compared, prior to (D1) and after (D15) the program, the amplitude of the cortical response evoked by foot cutaneous stimulation (SEP) occurring either during quiet standing or during the planning of a step in 18 obese patients (mean body mass index, BMI: 35). The APA were analyzed by measuring the amplitude and latency of the lateral force exerted on the ground. RESULTS AND SIGNIFICANCE: The SEP amplitude was not significantly different between the standing and stepping tasks at D1, but increased in the stepping task at D15. This enhanced sensory processing was associated with an increased activation of the posterior parietal cortex, suggesting a stronger involvement of the body representation during the planning of the stepping movement after the program. These cortical changes could have contributed to the changes in the temporal dimension of the APA observed at D15. These results suggest that programs targeting different dimensions of the BIR could be beneficial in improving the dynamic balance in obesity.


Assuntos
Antecipação Psicológica , Imagem Corporal , Obesidade/fisiopatologia , Obesidade/psicologia , Equilíbrio Postural/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Feminino , Pé/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia
11.
Appl Ergon ; 80: 265-271, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28599798

RESUMO

The purpose of this study was to determine the optimal inner-shoe volume for children tennis players. Sixteen participants, aged from 8 to 12 years old assessed comfort of 6 shoes, which were a combination of 3 lasts (thin, medium and wide) and 2 upper constructions (flexible and stiff), while a sock equipped with textile sensors was measuring the pressure applied on their foot. The thin last was based on the proportion of an adult last. The widest shoes produced the lowest pressure on the 1st and 5th metatarsal heads, the medial midfoot and the medial and lateral heel (p < 0.05), whilst they were perceived the most comfortable for the 3rd and 5th metatarsal heads, the 5th metatarsal base and the medial and lateral heel (p < 0.05). These outcomes indicated that footwear manufacturers should design wider shoes for children than for adults.


Assuntos
Desenho de Equipamento/psicologia , Sapatos , Equipamentos Esportivos , Tênis/fisiologia , Fenômenos Biomecânicos , Criança , Comportamento do Consumidor , Feminino , Pé/fisiologia , Calcanhar/fisiologia , Humanos , Masculino , Ossos do Metatarso/fisiologia , Pressão , Tênis/psicologia
12.
Eur J Sport Sci ; 17(10): 1261-1269, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28853317

RESUMO

Compared to traditional tennis shoes, using 0-drop shoes was shown to induce an immediate switch from rear- to forefoot strike pattern to perform an open stance tennis forehand for 30% of children tennis players. The purpose of the study was to examine the long-term effects of a gradual reduction in the shoe drop on the biomechanics of children tennis players performing open stance forehands. Thirty children tennis players participated in 2 laboratory biomechanical test sessions (intermediate: +4 months and final: +8 months) after an inclusion visit where they were randomly assigned to control (CON) or experimental (EXP) group. CON received 12-mm-drop shoes twice, whereas EXP received 8 mm then 4-mm-drop shoes. Strike index indicated that all CON were rearfoot strikers in intermediate and final test sessions. All EXP were rearfoot strikers in intermediate test session, but half the group switched towards a forefoot strike pattern in final test session. This switch resulted in a decreased loading rate of the ground reaction force (-73%, p = .005) but increased peak ankle plantarflexors moment (+47%, p = .050) and peak ankle power absorption (+107%, p = .005) for these participants compared with CON. Biomechanical changes associated with the long-term use of partial minimalist shoes suggest a reduction in heel compressive forces but an increase in Achilles tendon tensile forces.


Assuntos
Pé/fisiologia , Extremidade Inferior/fisiologia , Sapatos , Equipamentos Esportivos , Tênis/fisiologia , Fenômenos Biomecânicos , Criança , Humanos , Estudos Longitudinais , Masculino
13.
Front Hum Neurosci ; 11: 220, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28539876

RESUMO

It is well established that somatosensory inputs to the cortex undergo an early and a later stage of processing. The later has been shown to be enhanced when the earlier transmission decreased. In this framework, mechanical factors such as the mechanical stress to which sensors are subjected when wearing a loaded vest are associated with a decrease in sensory transmission. This decrease is in turn associated with an increase in the late sensory processes originating from cortical areas. We hypothesized that unweighting the plantar sole should lead to a facilitation of the sensory transmission. To test this hypothesis, we recorded cortical somatosensory evoked potentials (SEPs) of individuals following cutaneous stimulation (by mean of an electrical stimulation of the foot sole) in different conditions of unweighting when standing still with eyes closed. To this end, the effective bodyweight (BW) was reduced from 100% BW to 40% BW. Contrary to what was expected, we found an attenuation of sensory information when the BW was unweighted to 41% which was not compensated by an increase of the late SEP component. Overall these results suggested that the attenuation of sensory transmission observed in 40 BW condition was not solely due to the absence of forces acting on the sole of the feet but rather to the current relevance of the afferent signals related to the balance constraints of the task.

14.
Gait Posture ; 56: 123-128, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28544949

RESUMO

Athletic children are prone to overuse injuries, especially at the heel and knee. Since footwear is an extrinsic factor of lower limb injury risk, the aim of this study was to assess the influence of shoe aging on children running biomechanics. Fourteen children active in sports participated in a laboratory biomechanical evaluation. A new pair of shoes was provided to each participant at an inclusion visit. Four months later, the participants performed a running task and their kinematics and kinetics were assessed both with their used shoes and with a new pair of shoes identical to the first. Furthermore, mechanical cushioning properties of shoes were evaluated before and after in-vivo aging. After 4months of use, the sole stiffness increased by 16% and the energy loss capacity decreased by 18% (p<0.001). No ankle or knee kinematic adjustment was found at foot strike in used shoes but changes were observed later during stance. Running with used shoes produced a higher loading rate of the vertical ground reaction force (+23%, p=0.016), suggesting higher compressive forces under the heel and placing children at risk to experience impact-related injuries. Nevertheless, the decreased peak ankle and knee power absorption in used shoes (-11%, p=0.010 and -12%, p=0.029, respectively) suggests a lower ankle and knee joints loading during the absorption phase that may be beneficial regarding stretch-related injuries.


Assuntos
, Corrida , Sapatos , Fenômenos Biomecânicos , Criança , Desenho de Equipamento , Feminino , Humanos , Masculino
15.
PLoS One ; 12(4): e0176508, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426783

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0168545.].

16.
PLoS One ; 11(12): e0168545, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27992539

RESUMO

Amongst reduced gravity simulators, the lower body positive pressure (LBPP) treadmill is emerging as an innovative tool for both rehabilitation and fundamental research purposes as it allows running while experiencing reduced vertical ground reaction forces. The appropriate use of such a treadmill requires an improved understanding of the associated neuromechanical changes. This study concentrates on the runner's adjustments to LBPP-induced unweighting and reloading during running. Nine healthy males performed two running series of nine minutes at natural speed. Each series comprised three sequences of three minutes at: 100% bodyweight (BW), 60 or 80% BW, and 100% BW. The progressive unweighting and reloading transitions lasted 10 to 15 s. The LBPP-induced unweighting level, vertical ground reaction force and center of mass accelerations were analyzed together with surface electromyographic activity from 6 major lower limb muscles. The analyses of stride-to-stride adjustments during each transition established highly linear relationships between the LBPP-induced progressive changes of BW and most mechanical parameters. However, the impact peak force and the loading rate systematically presented an initial 10% increase with unweighting which could result from a passive mechanism of leg retraction. Another major insight lies in the distinct neural adjustments found amongst the recorded lower-limb muscles during the pre- and post-contact phases. The preactivation phase was characterized by an overall EMG stability, the braking phase by decreased quadriceps and soleus muscle activities, and the push-off phase by decreased activities of the shank muscles. These neural changes were mirrored during reloading. These neural adjustments can be attributed in part to the lack of visual cues on the foot touchdown. These findings highlight both the rapidity and the complexity of the neuromechanical changes associated with LBPP-induced unweighting and reloading during running. This in turn emphasizes the need for further investigation of the evolution over time of these neuromechanical changes.


Assuntos
Extremidade Inferior/fisiologia , Modelos Biológicos , Contração Muscular/fisiologia , Relaxamento Muscular/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia , Adolescente , Adulto , Fenômenos Biomecânicos , Eletromiografia , Humanos , Masculino
17.
Eur J Sport Sci ; 16(8): 1121-9, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27210455

RESUMO

This study investigated the immediate effects of reducing the shoe drop (i.e. the difference between the heel and the forefoot height) on the kinematics and kinetics of the lower extremities of children tennis players performing a tennis-specific movement. Thirteen children tennis players performed a series of simulated open stance forehands wearing 3 pairs of shoes differing only in the drop: 0 (D0), 6 (D6) and the control condition of 12 mm (D12). Two embedded forceplates and a motion capture system were used to analyse the ground reaction forces and ankle and knee joint angles and moments of the leading lower limb. In D6 compared with D12, the peak impact force was reduced by 24% (p = .004) and the ankle was less dorsiflexed at foot strike (p = .037). In D0 compared with D12, the peak impact force was reduced by 17% (p = .049), the ankle was less dorsiflexed at foot strike (p = .045) and the knee was more flexed at foot strike (p = .007). In addition, 4 out of 13 participants (31%) presented a forefoot strike pattern for some of the trials in D0. No difference was observed across shoe conditions for the peak knee extensor moment (p = .658) or the peak ankle plantarflexor moment (p = .071). The results provide preliminary data supporting the hypothesis that for children tennis players, using a 6-mm lower shoe drop might reduce heel impact forces and thus limit potentially impact-related injuries.


Assuntos
Pé/fisiologia , Extremidade Inferior/fisiologia , Amplitude de Movimento Articular/fisiologia , Tênis/fisiologia , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Criança , Marcadores Fiduciais , Humanos , Articulação do Joelho/fisiologia , Corrida , Sapatos
18.
J Sports Sci ; 34(8): 738-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26222328

RESUMO

In habitually shod recreational runners, we studied the combined influence of footwear and stretch-shortening cycle (SSC) fatigue on treadmill running pattern, paying special attention to neuro-mechanical adjustments in the acute and 2-day delayed recovery periods. The SSC exercise consisted of a series of 25 sub-maximal rebounds on a sledge apparatus repeated until exhaustion. The acute and delayed functional fatigue effects were quantified in a maximal drop jump test. The neuro-mechanical adjustments to fatigue were examined during two submaximal treadmill run tests of 3 min performed either barefoot or with shoes on. Surface electromyographic (EMG) activities, tibial accelerations and kinematics of the right lower limb were recorded during the first and last 15 s of each run. The main result was that neuro-mechanical differences between the shod and barefoot running patterns, classically reported in the absence of fatigue, persisted in the fatigued state. However, in the delayed recovery phase, rearfoot eversion was found to significantly increase in the shod condition. This specific footwear effect is considered as a potential risk factor of overuse injuries in longer runs. Therefore, specific care should be addressed in the delayed recovery phase of SSC fatigue and the use of motion control shoes could be of interest.


Assuntos
Marcha/fisiologia , Extremidade Inferior/fisiologia , Fadiga Muscular/fisiologia , Corrida/fisiologia , Sapatos , Adulto , Fenômenos Biomecânicos , Eletromiografia , Humanos , Masculino , Músculo Esquelético/inervação , Resistência Física/fisiologia
19.
Eur J Appl Physiol ; 115(5): 1135-45, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25566954

RESUMO

PURPOSE: In running, body weight reduction is reported to result in decreased lower limb muscle activity with no change in the global activation pattern (Liebenberg et al. in J Sports Sci 29:207-214). Our study examined the acute effects on running mechanics and lower limb muscle activity of short-term unweighing and reloading conditions while running on a treadmill with a lower body positive pressure (LBPP) device. METHOD: Eleven healthy males performed two randomized running series of 9 min at preferred speed. Each series included three successive running conditions of 3 min [at 100 % body weight (BW), 60 or 80 % BW, and 100 % BW]. Vertical ground reaction force and center of mass accelerations were analyzed together with surface EMG activity recorded from six major muscles of the left lower limb for the first and last 30 s of each running condition. Effort sensation and mean heart rate were also recorded. RESULT: In both running series, the unloaded running pattern was characterized by a lower step frequency (due to increased flight time with no change in contact time), lower impact and active force peaks, and also by reduced loading rate and push-off impulse. Amplitude of muscle activity overall decreased, but pre-contact and braking phase extensor muscle activity did not change, whereas it was reduced during the subsequent push-off phase. CONCLUSION: The combined neuro-mechanical changes suggest that LBPP technology provides runners with an efficient support during the stride. The after-effects recorded after reloading highlight the fact that 3 min of unweighing may be sufficient for updating the running pattern.


Assuntos
Peso Corporal/fisiologia , Corrida/fisiologia , Suporte de Carga/fisiologia , Aceleração , Adolescente , Adulto , Fenômenos Biomecânicos/fisiologia , Eletromiografia , Teste de Esforço , Humanos , Cinética , Masculino , Adulto Jovem
20.
Eur J Appl Physiol ; 111(9): 2295-305, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21336839

RESUMO

This study analysed the time course of neuro-mechanical changes underlying stretch-shortening cycle during intermittent exhaustive rebound exercise. On a sledge apparatus, ten subjects repeated until exhaustion a series of 30 unilateral submaximal rebounds, with intermediate 3-min rest periods. Rebound height, ground reaction force, 3D tibial acceleration and electromyographic activity of major lower limb muscles were recorded. A maximal drop jump test performed before and after the exhaustive exercise revealed a 10% drop in maximal stretch-shortening cycle (SSC) performance. Specific investigation of the neuro-mechanical changes along the exhaustive exercise included classical comparison of the first (BEG) and last (END) rebound series. From the initial accommodation phase, an optimized (OPTIM) series was individually determined as the first of at least two subsequent series with significantly shorter contact time than in the BEG series. The OPTIM series was reached after 3 ± 1 series, with associated increased lower limb stiffness during the braking phase and decreased muscle activities during the push-off. The major result was that the early (BEG-OPTIM) changes explained most of the BEG-END ones whereas the actual (OPTIM-END) fatigue effects remained quite limited. This confirmed our expectation that erroneous quantification of the SSC fatigue effects might be drawn when using the early beginning of rebound exercise on the sledge as a reference. Actual fatigue effects included medio-lateral instability as suggested by increased peroneus longus preactivation and medio-lateral tibial acceleration. The present methodology is thus considered as improving the distinction between SSC optimization and its deterioration with fatigue.


Assuntos
Fenômenos Biomecânicos/fisiologia , Neurônios Motores/fisiologia , Exercícios de Alongamento Muscular/métodos , Esforço Físico/fisiologia , Adulto , Elasticidade , Exercício Físico/fisiologia , Feminino , Humanos , Masculino , Movimento (Física) , Periodicidade , Amplitude de Movimento Articular/fisiologia , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...